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The issue of the Gibbs paradox is that when considering mixing of two gases within classical thermody-
namics, the entropy of mixing appears to be a discontinuous function of the difference between the gases: it is
finite for whatever small difference, but vanishes for identical gases. The resolution offered in the literature,
with help of quantum mixing entropy, was later shown to be unsatisfactory precisely where it sought to resolve
the paradox. Macroscopic thermodynamics, classical or quantum, is unsuitable for explaining the paradox,
since it does not deal explicitly with the difference between the gases. The proper approach employs quantum
thermodynamics, which deals with finite quantum systems coupled to a large bath and a macroscopic work
source. Within quantum thermodynamics, entropy generally loses its dominant place and the target of the
paradox is naturally shifted to a decrease of the maximally available work before and after mixing �mixing
ergotropy�. In contrast to entropy this is an unambiguous quantity. For almost identical gases the mixing
ergotropy continuously goes to zero, thus resolving the paradox. In this approach the concept of “difference
between the gases” gets a clear operational meaning related to the possibilities of controlling the involved
quantum states. Difficulties which prevent resolutions of the paradox in its entropic formulation do not arise
here. The mixing ergotropy has several counterintuitive features. It can increase when less precise operations
are allowed. In the quantum situation �in contrast to the classical one� the mixing ergotropy can also increase
when decreasing the degree of mixing between the gases or when decreasing their distinguishability. These
points go against a direct association of physical irreversibility with lack of information.
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I. INTRODUCTION

Studying mixtures and mixing processes is one of the old-
est tasks of thermodynamics. Perhaps the most celebrated
aspect of this task is the Gibbs paradox: the entropy increase
upon mixing two different gases stays finite for an arbitrary
small difference between the gases, but is zero for identical
gases.

This paradox is discussed in many textbooks on thermo-
dynamics and statistical physics—e.g., in �1,2�—and it cre-
ated a vast amount of literature during the last hundred years
until our day �3–17�. It was stated to be of a high principal
and methodical value �4�, since it displays the limits of ap-
plicability for classical �phenomenological� thermodynam-
ics: the resolution of the paradox �if any� ought to lie outside
this discipline. Already several times the paradox was
claimed to be resolved, but each time it was reconsidered and
seen as an open issue again.

The present status of the problem is somewhat controver-
sial. The existing opinions can be roughly summarized as
follows.

�i� The paradox is resolvable within the information the-
oretical approach already in classical statistical physics
�11,13�.

�ii� The most natural resolution of the paradox has been
achieved within quantum statistical physics �4–9� thanks to
the feature of partial distinguishability.

�iii� The quantum situation presents a natural setting for
the resolution, but there is a specifically quantum peculiarity
of the problem �induced by noncommutativity� which still
prevents its ultimate resolution �14�. Thus, the Gibbs paradox
in quantum statistical physics has so far not been resolved.

We share the last opinion. Our purpose is to present an
explanation of this thermodynamical paradox starting from
the first principles of quantum mechanics.

This is the program of quantum thermodynamics; see �18�
for a short review. The crucial point in our discussion of the
Gibbs paradox is to realize that it has to be formulated in
terms of the available work, as was already realized by
Landé in 1955 �6�. �Within the setup of classical thermody-
namics this formulation is equivalent to the entropic one �6�.�
In contrast to entropy, the available work—by definition an
ensemble average—is a well-defined quantity for any equi-
librium or nonequilibrium state even of small quantum sys-
tems and it is a function of both the state and class of work
sources employed for work extraction. Moreover, the fea-
tures of work are grounded directly on the first principles of
quantum mechanics. On top of that, the amount of available
work adequately reflects intuition usually associated with en-
tropy, such as being a measure of nonequilibrium or
disorder.1

The above first-principles properties lead to the resolution
of the paradox in terms of mixing work which shows per-
fectly continuous behavior when the difference between the
gases goes to zero. Difficulties which prevent resolutions of
the paradox in its entropic formulation do not arise here.

1In fact the priority of the available work over entropy was ad-
equately understood already by Clausius; see discussions in �20�.
Another example is Schrödinger, who in his famous book �21� gave
importance to �neg�entropy for characterizing survival of organ-
isms, but later on admitted that he should have spoken in this con-
text about the available work rather than entropy.
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Certain aspects of the proposed scheme—using work instead
of entropy, time-scale separation, etc.—were already antici-
pated in literature—e.g., in �6,15�. However, these anticipa-
tions were conceived only in the framework of phenomeno-
logical thermodynamics, and this is why the resolution in
terms of mixing work was not achieved.2

Our paper is organized as follows. In Sec. II we recall the
classical formulation of the Gibbs paradox. The next section
reviews the mixing entropy argument, an attempt to solve the
paradox with help of quantum entropy. Section IV discusses
in detail why this argument cannot be considered as a reso-
lution of the paradox. Two basic reasons for this are outlined,
and several pertinent issues are discussed. Section V presents
the resolution of the paradox with help of mixing work. In
Sec. VI we discuss the mixing work in the contexts of in-
struments available for work extraction. The analysis fully
embodies the idea that the difference between two substances
is first of all an operational notion and should not be given
any absolute status �23�. Moreover, it appears that the depen-
dence of the mixing work on the available instruments is
nontrivial, since it can both increase or decrease upon intro-
ducing restrictions on those instruments. Though the mixing
work is zero when mixing identical substances, in the quan-
tum situation it can be a nonmonotonous function of the
degree of mixing and of the �information-theoretic� distin-
guishability between the mixing substances. These are shown
in Secs. VII and VIII, respectively. The last section presents
our conclusions. Appendix A discusses definitions of entropy
and their relations to the second law; Appendix B recollects
several formulas.

II. CLASSICAL FORMULATION OF THE GIBBS
PARADOX

Consider two reservoirs each one having volume V. They
are separated by a wall and are filled with different ideal3

Boltzmann gases—e.g., with two different isotopes of the
same substance. The difference is not specified, but assumed
to be tunable. The number of particles, N, pressure P, and
temperature T in each reservoir are the same. The entropy S
of each gas is �1�4

S�N,V� = N ln
V

N
. �1�

Since the gases do not interact, the total entropy reads

Si = S1�N,V� + S2�N,V� = 2N ln
V

N
. �2�

Now remove the wall. The overall system of the two
gases is assumed to be thermally isolated �the only influence
of the external fields is in removing the wall�.5 The gases will
mix, and after some transient time, a new equilibrium state is
reached. Since in this state gases still do not interact, the final
entropy Sf can be obtained again as a sum of two partial
entropies, every component with N particles distributed in
the volume 2V,

Sf = S1�N,2V� + S2�N,2V� = 2N ln
2V

N
. �3�

Thus the mixing entropy reads

�S = Sf − Si = 2N ln 2. �4�

The additional contribution 2N ln 2 arose due to the irrevers-
ible process of mixing, and it does not depend on any quan-
titative measure of the difference between the ideal gases.

Now consider the same process, but assume that initially
the gases are identical. After removing the wall, Eq. �4� does
not predict any entropy change. Indeed, in the final state we
have a one-component gas with total number of particles,
2N, in the volume 2V. Thus, from Eq. �1�,

Sf = 2N ln
2V

2N

and this equals Si, so �S=0. This is, of course, the expected
and consistent result, since there is no irreversibility when
mixing two identical gases in equilibrium; see in addition
below and footnote 22. Thus we have arrived at the Gibbs
paradox �3–5�6:

When varying continuously the difference between the

2The to-be-presented resolution of the Gibbs paradox resembles
the recent solution for the Maxwell demon problem presented by
Scully and co-workers �22�: both find their basis in quantum
thermodynamics—that is to say, the thermodynamics of small quan-
tum systems coupled to a macroscopic bath and work source, the
latter leading to a time-dependent Hamiltonian. Another recent
result of quantum thermodynamics is our report on the breakdown
of the Landauer inequality for the energy needed to erase one bit of
information �19�.

3For simplicity we choose to work with ideal gases. The ideality is
not an issue for the Gibbs paradox: it exists for nonideal gases as
well �9�, and the resolution obtained below for ideal gases will be
generalizable to the nonideal situation.

4In formula �8� we omitted a term Nfm�T� with f being some
function of temperature—e.g., fm�T�= 5

2 − 3
2 ln��mT� / �2��2�� for a

monoatomic gas. This term does not play any role in our discusion,
since it drops out from the entropy difference. One also should not

be troubled by the presence of the dimension inside of the logarithm
in Eq. �1�, because it is canceled by the one of fm�T�, while in our
further discussion it drops out anyhow when calculating entropy
differences.

5We shall focus on the mixing in the thermally isolated system.
For ideal gases this coincides with the isothermal mixing, since the
energy U of such a gas depends only on its temperature: U /N
= fm�T�−Tfm� �T�, where the function fm�T� is discussed in Footnote
4. In general �i.e., for nonideal gases�, there will be a difference
between the isothermal mixing, where the temperature is kept con-
stant during the whole process with help of an external thermal
bath, and the mixing in the thermally isolated system, where the
final temperature is determined by the constancy of the overall en-
ergy. During the isothermal mixing the gases will exchange some
energy with the bath �mixing heat�.

6The paradox is not always formulated correctly in literature; see
�9� for a detailed criticism. Some authors define entropy as N ln V
and see the paradox in increasing the entropy when mixing two
identical gases. Others think that the paradox is resolved by the very
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gases, the entropy defined according to Eqs. (1), (2), and (4)
changes discontinuously.

It is to be stressed that the existence of the Gibbs paradox
is not connected with the thermodynamic limit N→�. As
discussed in �8,9�, the finite-N situation does bring some dif-
ferences in the expression for the entropy of mixing, but the
paradox survives; see in addition footnote 22.

III. MIXING ENTROPY ARGUMENT

A. Assumptions of the argument

It was realized by many scholars that the origin of the
paradox is that the difference between the gases is only as-
sumed, but does not show up explicitly in Eqs. �1�–�4�; i.e.,
the description that led to the discontinuity is not sufficiently
complete �6–9�. In that respect the paradox demonstrates the
limits of applicability of phenomenological thermodynamics.

It is expected that for two ideal gases the difference will
be related to the internal states of their atoms �6–10�:

�a� Indeed, besides the translational motion which contrib-
utes to the entropy �8�, the atoms of the gases also have
internal states �e.g., spin states�. These states are typically
described by quantum mechanics. For Boltzmann gases the
internal states of the atoms are decoupled from the transla-
tional motion. Returning to the above example of different
gases in two reservoirs, let us assume that the first and sec-
ond reservoirs contain atoms in internal states described by
density matrices

�1 and �2, �5�

respectively.7

One of the main points in taking the internal states into
account is that now from the very beginning we can treat the
two gases as identical, but being in different internal states �1
and �2 �8–10�. This is similar to what happens in nuclear
physics, where the neutron and proton are considered as
identical particles �nucleons� in different states distinguished
by the value of the isotopic spin.

�b� After removing the wall, the gases mix. We shall as-
sume that the time scale on which the internal states of the
gases change is much larger than the time scale related to
mixing of the translational degrees of freedom.

�c� Thus after the mixing, the internal states will be de-
scribed by the density matrix �M =2�

� = �
�=1

M

����. �6�

Since two equal amounts of gases are mixed, the probability
�weight� factors are equal, �1=�2= 1

2 .
The same equation �6� applies for the mixing of M gases

with number of particles, �N���=1
M , and initial density matri-

ces, �����=1
M ; the corresponding weights are

�� =
N�

��=1

M
N�

, � = 1, . . . ,M . �7�

For the details of this generalization see Sec. III C.

B. Implementation of the argument [6–9]

Due to the above decoupling feature, the total entropy of
the translational motions and the internal states of each gas is
defined as �recall Footnote 4�

Sk�N,V� = N ln
V

N
+ NSvN��k�, k = 1,2, �8�

SvN��� � − tr�� ln �� , �9�

where �k are given by �5�, and where SvN��� is the von Neu-
mann entropy.

The initial entropy of the two gases is the sum of two
contributions �recall that N1=N2=N�

Si = 2N ln
V

N
+ NSvN��1� + NSvN��2� , �10�

while the final entropy reads

Sf = 2N ln
2V

2N
+ 2NSvN��� . �11�

Recall that we treat two gases as identical; so in the final
state there is a single gas having 2N particles in volume 2V.
The mixing entropy �S=Sf−Si thus reads

�S = 2N	SvN��� −
1

2
SvN��1� −

1

2
SvN��2�
 . �12�

Assume that the internal states were maximally
different—i.e., orthogonal:

�1�2 = 0. �13�

Such states can be distinguished by a single measurement,
i.e.; if it is known that the state of a given single atom be-
longs to an ensemble described by either �1 or �2, then a
single measurement suffices to establish the identity of the
state. In this respect orthogonal states are similar to the clas-
sical case �perfect distinguishability�. It is seen from defini-
tions �6� and �9� that

SvN��� = − tr	�1

2
ln

�1

2

 − tr	�2

2
ln

�2

2

 �14�

and that the mixing entropy �S=2N ln 2 agrees with the pre-
diction �4� of classical thermodynamics.

fact of not having any entropy increase when mixing identical
gases. To avoid confusion, we stress that the paradox is in the
discontinuous change of entropy when tuning the difference be-
tween the gases. A closely related point—which can also be viewed
as paradoxical—is that the mixing entropy does not depend on the
actual difference between the gases, provided this difference is not
zero.

7Recall that the density matrix—as well as the wave function—
refers to an ensemble of identically prepared systems; see, e.g., �2�.
Thus by “state of a particle” we necessarily mean the density matrix
of the ensemble to which this particle belongs.
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The other extreme is when the states are identical,

�1 = �2, �15�

which implies �S=0, again in agreement with the prediction
of classical thermodynamics.

In general, if neither Eq. �13� nor �15� is true, the states �1
and �2 are only partially distinguishable; i.e., any finite num-
ber of measurements will distinguish these states with a finite
error. Assume the states are pure:

�1 = �a1�a1� and �2 = �a2�a2� . �16�

Noting the spectrum

Spec�1

2
�a1�a1� +

1

2
�a2�a2�� =

1

2
�1 ± �a1�a2��� , �17�

we get, from Eq. �12�,

�S

2N
= − tr�� ln �� = h�1 − �a1�a2��

2
� , �18�

h�x� � − x ln x − �1 − x�ln�1 − x� . �19�

This expression is minimal and equal to zero for identical
gases �a1 �a2��=1. It is maximal and equal to 2N ln 2 for
totally distinguishable �orthogonal� states �a1 �a2��=0. In the
intermediate case 0� �a1 �a2���1, �S changes continuously,
a conclusion that holds more generally �9�. This was seen as
a resolution of the Gibbs paradox �6–10�.8 We shall recall
counter arguments in Sec. IV.

C. Generalization to several mixing gases

We shall indicate how Eq. �12� changes for the mixing of
two gases having an initially nonequal number of particles
and nonequal volumes. The generalization to the mixing of
several gases will be straightforward.

Let the first and second resevoirs contain, respectively, N1
and N2 particles in volumes V1 and V2. Since we are inter-
ested in irreversibilities coming due to mixing only, we
should assume that the initial pressures P and temperatures T
of the two gases are equal both initially and finally. The
known ideal-gas relation PV=NT, applied for V=V1 ,V2 ,V1
+V2 and N=N1 ,N2 ,N1+N2, implies

P

T
=

N1

V1
=

N2

V2
=

N1 + N2

V1 + V2
. �20�

Using Eq. �20� and proceeding along the same lines as
when deriving Eq. �12�, we get, for the mixing entropy
�M =2�,

�S

�	=1

M
N	

= SvN��
�=1

M

����� − �
�=1

M

��SvN���� , �21�

where

�� =
N�

�	=1

M
N	

, � = 1, . . . ,M , �22�

are the fractions of the two gases in the final density matrix.
We already wrote Eqs. �21� and �22� such that they hold for
any M 
2.

IV. CRITIQUE OF THE QUANTUM MIXING ENTROPY
ARGUMENT

A. Thermodynamic entropy of mixing is ill defined in
quantum mechanics

The above argument on the continuous change of �S was
seen by many as the resolution of the Gibbs paradox—and it
is often still believed to be. However, a more detailed analy-
sis has shown that this explanation creates a new conceptual
problem �14�. Let us recall the following features of the ther-
modynamical entropy.

�i� If two states A and B are connected by an irreversible
process A→B, then for defining thermodynamically the en-
tropy change during this process, we should connect those
states by a certain reversible process AÞB—possibly by
involving thermal baths and sources of work—and calculate
the entropy change �S via the Clausius formula

�S�A → B� = �
AÞB

dQ

T
, �23�

where dQ and T are, respectively, the differential heat
�received from thermal baths� and the temperature.

Equation �23� provides entropy with an operational mean-
ing and makes it observable via macroscopic measurements.
Indeed, determining, e.g., the von Neumann entropy via its
definition �9� implies knowledge of all eigenvalues of the
corresponding density matrix �. This knowledge is not avail-
able for typical macroscopic or mesoscopic systems.

�ii� A reversible process AÞB is defined by requiring that
it is possible to pass back along the same trajectory and to
return to the same thermodynamical state,9 such that, in par-
ticular, the entropy change during the resulting cyclic process
AÞBÞA is equal to zero:

�
AÞBÞA

dQ

T
= 0.

Any statistical definition of entropy is expected to agree
with the above thermodynamical one. An inspection shows,
however, that this is not the case �14�: the partially distin-
guishable �i.e., nonorthogonal� states—which were supposed8Note that there are several differences between the positions un-

dertaken by the authors of �7–9� versus the one of Landé in �6�. The
detailed analysis carried out in �9� suggests that the approach by
Landé contains errors, and his final formulas for the entropy of
mixing are different from those in �7–9�.

9The thermodynamical state is defined by the values of certain
macroscopic quantities, such as pressure, temperature, magnetiza-
tion, entropy, etc.
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to solve the paradox—create in this respect an inconsistency.
It appears that for such states there is no reversible mixing
process. Let us first of all note that when the internal states
�1 and �2 are orthogonal—that is, they correspond to definite
eigenvalues a1 and a2 of some physical observable �Hermit-
ian operator� A—it is possible to separate the mixed gases
and at least in principle to fulfill the requirement of a cyclic
process. What one needs for this purpose is a suitable Hamil-
tonian �24�

Hsep = f�r�,A� , �24�

which establishes strong correlations between the internal
states of the atoms and their translational motion described
by the position vector r� �24�: the function f�r� ,ai�, with i
=1,2, is very small for r� being in, respectively, first and
second reservoirs. The magnitude of Hsep has to be suffi-
ciently large, so that all other terms in the overall Hamil-
tonian can be neglected. Together with a low-temperature
bath, weakly coupled to the gases, the Hamiltonian Hsep will
drive the system towards its minima and it will separate the
mixed gases back into different reservoirs �24� without
changing the internal states of the atoms �since �Hsep ,A�=0�.
There can be practical limitations on this procedure related,
e.g., with limitations on the magnitude of Hsep, but in prin-
ciple such a process is possible. Thus, one can apply Eq. �23�
and recover of the usual thermodynamical formulas for en-
tropy �24�.

The problem is that once the gases described by initially
partially distinguishable �nonorthogonal� density matrices �1
and �2 �state A� are mixed with weights �1 and �2, respec-
tively �state B�, then it is impossible to go back to the origi-
nal state by any process such that the two gases return to
their original states: There is no Hamiltonian similar to Hsep
in Eq. �24� which can achieve such a separation �24�, in
particular because �1 and �2 do not form eigenstates of any
Hermitian operator.

Are there, however, measurements which can help to
achieve this separation? We need a careful discussion of this
question, since the existing opinions—e.g., those presented
in �14�—seem to us somewhat unclear.

First of all, we note that the procedure involving Hsep can
be seen as a measurement, where the role of the measuring
apparatus is played by the classical coordinate r� of the
atom.10 The motion of this apparatus amounts to the separa-
tion of the gases. The above question can be thus reformu-
lated as to concern other measuring apparatuses �not con-
nected with the coordinates� and their role for separation of
the gases. Our answer to this question is negative, and here is
why.

Using the example given by Eqs. �16�, it is seen that there
is not any measurement which would discriminate
unambiguously—and without disturbing the initial states—
between �a1� and �a2�, if a2 �a1� is neither zero nor one �24�.
Thus, it is impossible to separate the gases without disturb-
ing the states of their atoms. However, requiring cyclic

changes of every single-atom state is too much for a thermo-
dynamical reasoning. It suffices to require cyclic change of
all collective �macroscopic variables� of the gases. In par-
ticular, the �final� internal states of the atoms in each reser-
voir are to be described by the density matrices �1= �a1�a1�
and �2= �a2�a2�, respectively. Such �generalized� measure-
ments do exist.11 Assume for simplicity that the internal
state is a spin-1

2 state represented by the Pauli matrices ��
= ��1 ,�2 ,�3�. One comes with another set of particles carry-
ing spin 1

2 described by the Pauli matrices s�= �s1 ,s2 ,s3�. The
spins �� and s� undergo a controlled unitary evolution, after
which one measures, e.g., s3 with the help of a suitable mac-
roscopic measurement apparatus. After selecting measure-
ment results �i.e., the eigenvalues ±1 of s3�, the initial mixed
ensemble �=�1�a1�a1�+�2�a2�a2� of the �� spin is separated
into two subensembles �1= �a1�a1� and �2= �a2�a2�, with the
probabilities �weights� �1 and �2, respectively �26,27�. This
is the desired separation.

However, quantum measurements are by their very nature
noncyclic, since dissipative processes are connected with the
motion of the pointer variable. In the above example both the
spin s� and the apparatus measuring s3 have undergone such
noncyclic processes. These certainly do generate an indepen-
dent �and sizable� amount of entropy which is not taken into
account in Eq. �23�.

�iii� In summary, the possibility to define a cyclic process
is a necessary condition for the thermodynamical meaning of
entropy. When mixing gases that have non-orthogonal states,
there are no suitable cyclic unmixing processes. This pre-
cludes entropy from having the proper thermodynamical
meaning. Thus, trying to solve the problem in one place the
quantum mixing entropy argument creates a new problem
almost at the same time. The Gibbs paradox thus remains
unexplained.

1. Why it is impossible simply to define entropy
via the von Neumann formula

In the context of the above objection to the thermody-
namical meaning of the mixing entropy in the quantum situ-
ation, one can ask why it is not possible simply to define
entropy via the von Neumann formula �9� without worrying
about its precise relation to other thermodynamical notions.
If desired, such a definition may be motivated, e.g., via
information-theoretic arguments �2�.

In our opinion this is not possible to do, since entropy in
statistical physics is never defined as an independent macro-
scopic observable; note again that the calculation of the von
Neumann entropy via Eq. �9� requires knowledge of the full
spectrum of the density matrix �, which is microscopic in-
formation normally not available for statistical systems. For
internal states, it may be available, though. More generally,
entropy cannot be defined from first principles without tak-
ing into account the corresponding formulations of the sec-

10A closely related quantum mechanical model for quantum �and
classical� measurements was recently analyzed in detail �25�

11This is a known fact in the physics of quantum ensembles; see,
e.g., Ref. �26�. The described procedure amounts to POVM �posi-
tive operator measured values�. Recently we discussed in detail its
implications for defining fluctuations of work �27�.
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ond law of thermodynamics, a fact that strictly speaking pre-
cludes any really noncircular derivation of these entropic
formulations from first principles �1�. In contrast, formula-
tions of the second law that operate with work instead of
entropy normally do have first-principles derivations; see,
e.g., �28–30�. The nonunique character of entropy is recalled
and illustrated in Appendix A.

B. The employed notion of “difference between gases” does
not have a clear operational status

Another difficulty with the above argument is that this
attempted resolution of the paradox does not depend on the
available experimental instruments and tools to be employed
in control of the internal states of the atoms. As it stands
within the entropic argument, the resolution depends on the
difference between the states which is determined by their
initial preparations via density matrices �1 and �2. However,
preparation and control are different things and in general
cannot be combined in a single density matrix. As an ex-
ample, consider the preparation of a Gibbsian state with den-
sity matrix ��exp�−H /T�, where H and T are, respectively,
the Hamiltonian and temperature. This preparation needs
only a weak interaction between the system and a thermal
bath at temperature T; it does not contain any information on
what we can measure or control in this system.

On general grounds, it was argued in �23� that the resolu-
tion of the Gibbs paradox has to be operational, since there
are situations when two objects are formally different, but no
computable �i.e., solvable by algorithms� operation can es-
tablish this difference. Worse, we cannot exclude unknown
laws of physics that in the future would force us to distin-
guish �states of� atoms or particles which in our present un-
derstanding are considered as identical.

This operational aspect is also important, because, as we
see below for the approach that takes this properly into ac-
count, the dependence on the available instruments is non-
trivial: less refined instruments can—depending on the
situation—indicate less or more irreversibility of mixing.

One may perhaps counterargue the above criticism by
noting that the operational meaning and the dependence on
the available instruments might be provided by the
information-theoretic approach to statistical physics; see,
e.g., �11,13�. We, however, should simply note that
information-theoretic constructions are not at all guaranteed
to have the proper physical meaning, as we saw for the above
reversibility problem. Moreover, uncritical use of
information-theoretic concepts may by itself lead to prob-
lems; see, e.g., �19�, where the first-principles derivation of
the Landauer bound for information erasure was found in
conflict with the information-theoretical one.

V. RESOLUTION OF THE PARADOX VIA THE CONCEPT
OF MAXIMAL MIXING WORK

The main point of the present paper is to employ quantum
thermodynamics—the thermodynamics of finite systems
coupled to a macroscopic worksource and possibly to a mac-
roscopic bath. As realized in earlier works �18,19,31�, this

approach generally acknowledges that one should study
work instead of entropy—in the absence of a thermodynamic
limit the latter has no firm meaning and each definition leads
to a new value. This shift of paradigm will allow us to re-
solve the Gibbs paradox without the difficulties and ill-
defined meaning of the mixing entropy argument. The reason
for this solution lies in the fact that work and its properties
are deduced from the first principles of quantum mechanics
without any need of thermodynamic postulates �such as re-
versibility or existence of cyclic processes�; see in this con-
text footnotes 14 and 15. In other words, the resolution of the
paradox is sought by going to the first principles of quantum
mechanics alone and without involving any thermodynamic
argument.

We start by recalling the definition of available work for a
general, thermally isolated process done on a quantum sys-
tem.

A. Definition of work

A quantum system is described at the initial time t=0 by
a density matrix ��0� and interacts with an external macro-
scopic work source. The resulting evolution of the system is
generated by �an effective� Hamiltonian H�t�=H�R�t��,
which is time dependent via classical �c-number� parameters
R�t� �control fields�.

We shall be concerned with processes where the change
of the Hamiltonian is cyclic:

H�� = H�0� = H . �25�

The situation where the work source interacts with the sys-
tem for a finite time belongs to this class of processes, since
the corresponding system-work-source interaction Hamil-
tonian is zero both initially and finally.12 Note that processes
with a cyclic Hamiltonian are obviously different from the
processes that are cyclic in the sense of various macroscopic
quantities. However, it is necessary to have a cyclic change
of the Hamiltonian for the process to be cyclic in the sense of
macroscopic quantities.

Thus, the process is assumed to be thermally isolated and
the Hamiltonian H�t� generates a unitary evolution:

i�
d

dt
��t� = �H�t�,��t�� , �26�

��t� = Ut��0�Ut
†, Ut = exp� 	−

i

�
�

0

t

dsH�s�
 , �27�

where exp� denotes the time-ordered exponent. It is well
known that, in general, a Hamiltonian evolution for two
coupled systems does not reduce to a Hamiltonian evolution
for one of them. However, in the present case the evolution

12All constructions below generalize to processes, where the ini-
tial and final Hamiltonians are different. In the context of the Gibbs
paradox this more general setting may provide some advantages,
though it does not give any conceptual novelty as compared to the
cyclic-Hamiltonian case.
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of the system is Hamiltonian owing, in particular, to the mac-
roscopic character of the work source, as discussed in
�2,32�.13

�i� The work W done by the external source between times
0 and  in the thermally isolated process14 is identified with
the average energy change of the system �1,2�:

W = tr����H�� − ��0�H�0�� . �28�

�ii� Due to conservation of the �average� energy, W is
equal to the average energy decrease of the work source.

�iii� This is a classical, mechanical energy that can be
transferred with 100% efficiency to other macroscopic work
sources, and, in particular, it can transferred to another me-
chanical degree of freedom performing classical determinis-
tic motion.

�iv� W is typically observed via suitable �classical� mea-
surements done on the macroscopic work source or, alterna-
tively, by measuring the initial and final average energies on
the ensemble of �many� identically prepared systems. Both
these ways are routinely employed in practice, e.g., in NMR
and electron spin resonance �ESR� physics, where the system
corresponds to spin 1

2 under the influence of external mag-
netic fields �work source�.

�v� The definition of work and its features are based
purely on the first principles of quantum mechanics. They do
not depend on thermodynamical concepts, such as
reversibility.15 In contrast, the work as it is known in ther-
modynamics can be deduced from the first principles of
quantum mechanics.

B. Maximally available work

One of the fundamental tasks of thermodynamics is to
determine the maximal amount of work which can be ex-
tracted from a given �nonequilibrium� system in the initial
state � under cyclic-Hamiltonian �sufficiently smooth� pro-
cesses �25�. The latter condition is imposed, since otherwise
there may not be any limit in the extracted work �e.g., for the
final Hamiltonian being negative and very large by the abso-
lute value�. It is via this task posed by Clausius and solved
within phenomenological thermodynamics that entropy ac-
quires its physical meaning as a measure of order related to
high-graded energy �work� �1,34�. While the standard solu-
tion of this task is well known and based on the notion of
reversible process �in the same way as the definition of en-
tropy is�, it was recently shown that the problem can, and
should, be solved from the first principles of quantum me-
chanics without invoking any thermodynamical axiom
�32,34�. The solution differs from the standard one, though
the latter provides a correct bound for the maximal work
Wmax in Eq. �32� below and is expected to agree with it when
phenomenological thermodynamics is supposed to apply—
i.e., for weakly nonequilibrium states of generic macroscopic
systems.

To describe the solution to the maximal work extraction
problem, we denote the eigenresolutions of the Hamiltonian
H and of the density matrix � as, respectively,

H = �
k=1

n

�k��k��k�, � = �
k=1

n

pk�pk�pk� , �29�

where ���k��k=1
n and ��pk��k=1

n with �k ��l�= pk � pl�=�kl are the
eigenvectors of H and �, respectively, and where �k and pk
are the corresponding eigenvalues. We shall assume that

�1 � �2 � ¯ . �30�

The non-increasing ordering of ��pk��k=1
n is denoted as:

p1
↓ 
 p2

↓ 
 ¯ . �31�

Then the maximal available work is defined as �34�

Wmax � − W = minU�trH���� − ��0��� , �32�

where W is the non-negative absolute value of the maximal
work and where the minimization in minU is taken over all
smooth, cyclic Hamiltonians16:

13The Appendix of Ref. �32� contains a clear discussion of certain
additional conditions that have to be satisfied for the time-
dependent Hamiltonian evolution and for the proper identification
of the work source.

14From the viewpoint of work exchange every process can be
completed to a thermally isolated one by including in the system its
environment �e.g., thermal baths�. Then the work �28� for this ther-
mally isolated process coincides with the usual definition of work
for an arbitrary process: W=�0

dttr��S�t��tH�t�, where �S�t� is the
time-dependent density matrix of the system. Indeed, let HE and HI

be, respectively, the Hamiltonian of the environment and the
system-environment interaction. Recall that the work sources act
only on the system; thus the total Hamiltonian H�t� of the system
+environment is H�t�=H�t�+HE+HI, where only the system
Hamiltonian H�t� is time dependent. To prove the desired statement
we have to write down expression �28�, W=tr��SE��H��
−�SE�0�H�0��, where �SE�t� is the time-dependent density matrix of
the system+environment, apply the von Neumann equation of mo-
tion for the thermally isolated process, i�̇SE= �H ,�SE�, and trans-
form W=�0

dttr��S�t���tH�t��=�0
dttr��SE�t���tH�t�� with the help of

integration by parts.
15In particular, the definition of a reversible process can be based

on the notion of work �33�. A process is reversible if �i� it can be
supplemented by its mirror reflection that goes back along the same
trajectory and �ii� the work done on this completed process is zero.
It is also clear that the definition of heat need not supersede the
definition of work. The reason for this is that from the viewpoint of
work exchange any process can be completed to a thermally iso-
lated one, where the work is uniquely related to the energy; see
footnote 14 in this respect.

16Note that for an n-level system the minimization over all Hamil-
tonians �33� can be carried out by minimizing over Hamiltonians of
the form H�t�=H+�i=1

m bi�t�Xi, where bi�t� are time-dependent c
functions and where Xi are operators such that any generator of the
group SU�n� can be obtained via linear combinations of
H ,X1 ,X2 , . . . ,Xm and their multiple commutators �35�. For n=2 and
H=�3 this Hamiltonian is H�t�=�3+b�t��1, with �1 and �3 being
the corresponding Pauli matrices. For n=3 the analogous Hamil-
tonian is H�t�=�3+b1�t��1+b4�t��4, where �k are the Gell-Mann
matrices �generators of SU�3��. If the minimization is carried out
via Hamiltonians �3+b1�t��1, the unitary transformations act only
on the upper left 2�2 sector of the 3�3 density matrix �.
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H�t� = H + V�t�, V�0� = V�� = 0, �33�

where  is the cycle time of the Hamiltonian.17 Minimizing
over the Hamiltonians in Eqs. �33� is equivalent to minimiz-
ing over all unitary operators U �34�; this is why we denoted
this minimization as minU. An explicit formula for the opti-
mal Hamiltonian is given in �34�, while the result of the
minimization in Eq. �32� yields the ergotropy �34,32�

W = tr��H� − �
k=1

n

pk
↓�k 
 0. �34�

This is a difference between the final and initial average
energies of the system, as it should be for the work extracted
in a thermally isolated system. It has a simple interpretation:
since in quantum mechanics the eigenvalues of � are con-
served under the unitary evolution caused by macroscopic
external sources, the lowest final energy is reached when the
largest eigenvalue of � becomes the ground-state occupation,
the one but largest eigenvalue occupies the first excited state,
and so on. Various features of W, in particular those contrast-
ing the thermodynamical intuition, were studied in �32,34�.
We suggested to call Eq. �34� the ergotropy of the state �.

It is seen from Eq. �34� that no work extraction is possible
�i.e., W=0� if � is a monotonically decreasing function of H:

� = f�H�, f��x� � 0. �35�

This, in particular, includes Gibbs equilibrium states �
�e−H/T, where T�0 is the temperature. This confirms Thom-
son’s formulation of the second law: no work extraction from
an equilibrium state by means of cyclic-Hamiltonian pro-
cesses �28,29�.

C. Operational meaning of the available work

The concept of maximal work takes into account the no-
tion of available instruments. Indeed, in Eq. �32� we opti-
mized the extracted work over all cyclic-Hamiltonian ther-
mally isolated processes, which assumes that the optimal one
is available. If there are restrictions on the availability of
sources of work, the amount of extractable work will, in
general, be smaller than W. It is even possible that no work
at all can be extracted by some restricted class of work
sources.18

To make this point clear, let us assume that the possible
unitary evolutions U in Eq. �32� are restricted to permuta-
tions of the diagonal elements,

�k = �k����k� , �36�

of the density matrix � in the energy representation.19 Then
instead of Eqs. �34� we will have

Wmax� � − W���,H� = �
k=1

n

�k
↓�k − tr��H� �37�

=�
k=1

n

�k��k
↓ − �k� . �38�

In general, we have for the ergotropy

W 
 W�, �39�

where the equality sign is realized for �� ,H�=0. It is now
possible that �k

↓=�k and thus W�=0, though W�0 due to
the nondiagonal elements of �.

D. Explanation of the paradox

We shall now immediately deal with M gases with arbi-
trary weights ��= �N�� / �N�, and the total of particles

N = �
�=1

M

N�. �40�

Let us return to the assumptions presented in Sec. III A and
list them again: �i� the necessity of taking into account the
internal states and �ii� decoupling of the internal and transla-
tional degrees of freedom: the total Hamiltonian Htot

��� of each
gas contained in the corresponding reservoir is

Htot
��� = H0

��� + �
i=1

N�

H��,i�, � = 1, . . . ,M , �41�

where H0 is the sum of kinetic energies of all N gas particles
plus the potential generated by the walls of the reservoir and
where H��,i� is the Hamiltonian of internal motions of the
atom with index i belonging to the gas with index �. Since
we assume that all atoms in both reservoirs are identical and
differ by their states only, we shall assume that all atoms
have the same internal Hamiltonian:

H��,i� = H . �42�

�iii� Time-scale separation between the translational and
internal degrees of freedom during the mixing; thus Eq. �6�,
�=��=1

M ����, holds for the post-mixed density-matrix for M
gases with the initial internal states �� and arbitrary weights
��.

In our opinion, these assumptions are physically sound; it
is only their implementation within the mixing entropy argu-
ment that is problematic. We shall avoid that argument by
using work �more precisely, its maximum in absolute value,
ergotropy� instead of entropy.

17We note that there are no restrictions on the product of  with
the typical magnitude of V�t� �i.e., on the dimensionless coupling
constant characterizing the sources of work�. It is also assumed that
the initial state � is known. Limitations on this knowledge will, in
general, lower the value of the maximal work.

18The class of employed work sources corresponds to what in �15�
was called a thermodynamical construction: a set of nonrelaxed
mechanical degrees of freedom that define the very meaning of
various thermodynamical quantities.

19There are, of course, many other ways to introduce limitations
on the available unitary evolutions. For more examples, see Ref.
�36�, as well as, the last part of Footnote 16 and Footnote 17.
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Before mixing, how much work can be extracted from the
total system containing M separate gases? The answer de-
pends on the specification of the interaction between the
gases and the sources of work. These interactions are chosen
under the following assumptions.

�1� Since the gases are ideal, it is natural to assume that
the sources act on each particle separately; i.e., the sources
by themselves do not introduce interparticle interactions.

�2� Work sources act on the internal degrees of freedom
only. This is because the internal and the translational de-
grees of freedom are decoupled and because the translational
degrees of freedom are in �local� equilibrium, so it is useless
to try to extract any work from them; recall our discussion
around �35�.

�3� We allow different sources of work to act on different
gases. This is again reasonable, since the gases start out per-
fectly separated from each other.

Given the above assumptions we are led to the following
time-dependent, internal Hamiltonian for each gas:

H����t� = �
i=1

N

�H�i� + V��,i��t�� . �43�

Since all particles within the given reservoir are equivalent,
we have

V��,i��t� = V����t� , �44�

where

V����0� = V����� = 0, �45�

as required by the cyclic-Hamiltonian feature �compare with
Eqs. �33��.

It is now seen that the maximal work extractable from the
premixed state reads

Wi = N�
�=1

M

��W���,H� , �46�

where W��� ,H� defined in Eq. �34� is the maximal work
extracted from the initial state �� with the initial �and final�
Hamiltonian H. Note that Wi is proportional to the total
number of particles N=��=1

M N� thanks to the above assump-
tions respecting the ideal gas structure of the problem.

Let us now determine how much work we can extract
after the M gases have mixed. The above conditions for a
system-work-source interaction remain valid except the last
one.

�3�� Since the gases now form a single homogeneous sys-
tem with the density matrix �=��=1

M ����, we cannot enforce
the different particles �atoms� to couple to different sources
of work. At best we can couple the N=��=1

M N� particles with
the same type of work sources. Thus, the physically accept-
able cyclic Hamiltonians has the form �33�.

The resulting maximal work reads, from Eqs. �6� and
�34�,

Wf = NW��
�=1

M

����,H� . �47�

The difference between Eqs. �46� and �47� is defined to be
the maximal mixing work or mixing ergotropy �W:

�W � Wi − Wf �48�

=N	�
�=1

m

��W���,H� − W��
�=1

M

����,H�
 ,

�49�

=N�
k=1

n

�k�pk
↓ − �

�=1

M

��pk,�
↓ � , �50�

where we employed Eq. �34� and where pk
↓ and pk,�

↓ are non-
increasingly ordered eigenvalues of � and ��, respectively.

The fact that maximal work cannot increase upon mixing,

�W 
 0, �51�

should be obvious from the very construction. Here is, how-
ever, the formal proof. Recall �32� and note that

maxU�
�tr�H��� − tr�HU���U�

†�� �52�

=tr�H��� − tr�HŨ���Ũ�
†� �53�


tr�H��� − tr�HU��U†� , �54�

where Ũ� is the optimal unitary operator which maximizes
�52� and where U is any other unitary operator, including the
one which maximizes tr�H�−HU�U†�. The desired �51� is
now recovered via multiplying �52�–�54� by �� and summing
over �.

The very same argument applies if the maximization in
the definition of W is carried out over a restricted class of
unitary operators or cyclic Hamiltonians �we assume, of
course, that this is the same class initially and finally�.
Analogous to �51�, we then deduce from �37� that �W�
0.

Turning to the conceptual implications of the mixing
work �W, we note that, of course, �W=0 for ��=�, when
identical gases are mixed. Moreover, it goes to zero continu-
ously with ��→�.

We therefore consider this continuity of maximally ex-
tractable work as the resolution of the Gibbs paradox within
quantum thermodynamics.

The first objection for the entropic argument—see our dis-
cussion around �23� and Ref. �14�—is now harmless, since
now the concept of thermodynamical reversibility is not em-
ployed anywhere; the machinery of the maximal work ex-
traction is based completely on quantum mechanics alone.
As we stressed repeatedly, work is a first-principles concept,
more fundamental than entropy �30�.20

Note that when �1 and �2 are pure states, the converse of
the above statement appears to be valid: if �1 and �2 are
different, then �W�0. This is because the only pure state

20In phenomenological thermodynamics, the problem of the maxi-
mal work extraction is treated by employing the reversibility con-
cept and features of entropy �1�. In our opinion, this is the reason
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that cannot provide work is the ground state of the Hamil-
tonian H. If, however, at least one of the two density matri-
ces is mixed, there are different states �1 and �2 such that
�W=0. For the simplest example recall �35� and take as �1
and �2 two equilibrium states with different temperatures T1
and T2.

To illustrate the above statements in more detail, we turn
to the density matrices given by �16�–�19�, where the Hamil-
tonian H has two energy levels 0 and ��0. Recalling �17�
we get from �49� that �W is a simple function of the over-
lap:

�W =
N�

2
�1 − �a1�a2��� . �55�

For completely distinguishable, classical states �a1 �a2��=0
this gives �W=� /2, while for identical states �a1 �a2��=1,
�W=0. The classical argument describes only these ex-
tremes �i.e., completely different or identical� and, thus, cre-
ates the paradox.

VI. HOW THE MIXING WORK DEPENDS
ON THE AVAILABLE INSTRUMENTS

Let us now turn to the second objection against the en-
tropic argument. We recall from Sec. IV B that once the dif-
ference between two states is recognized to be an operational
notion—two states may not differ under inspection by some
instruments, but turn out to be different if more refined ones
are used—we should expect that this feature is reflected in a
satisfactory resolution of the Gibbs paradox.

As we stressed repeatedly, the notion of available work is
operational in the above sense. So is the mixing work defined
in Eq. �49�. Moreover, the situation is nontrivial, since �W
can both increase or decrease under restricting the available
instruments �i.e., system-work-source interactions�, as we
show now.

To illustrate this fact, let us take the internal Hilbert space
of all particles having two dimensions �e.g., spin 1

2 �:

�� =
1

2
�1 + n���� �, � = 1, . . . ,M , �56�

where �� = ��1 ,�2 ,�3� are the Pauli �2�2� matrices and
where

n�� = �n1,�,n2,�,n3,��, �n��� � 1, �57�

is the Bloch c vector. Recalling the spectrum

Spec���� =
1

2
�1 ± �n���� , �58�

we get, from Eq. �49�,

�W =
N�

2
��

�=1

M

���n��� − ��
�=1

M

��n���� . �59�

On the other hand, if for the Hamiltonian

H =
��1 + �3�

2
�60�

the maximization over the uninary operators in Eq. �34� is
carried out only over those unitary operators which permute
the diagonal elements of the corresponding density matrices
in the energy representation �compare with �37� and �39��,
the mixing work will read

�W� =
N�

2
��

�=1

M

���n3,�� − ��
�=1

M

��n3,��� , �61�

where n3,� is the third component of the vector n� .
It is obvious that there are cases where

�W � �W�, �62�

e.g., choose n3,� all having the same sign which leads to
�W�=0. It is, however, less expected that there can also be
situations where

�W� � �W . �63�

This means that use of less precise instruments can increase
the amount of mixing work.

To show this, let us choose the case

�
�=1

M

��n3,� = 0 �64�

and write, from Eqs. �59� and �61�,

�W� − �W
N��/2�

= �
�=1

M

����
2n3,�

2 − ���
2�n3,�

2 + n1,�
2 + n2,�

2 ��

�65�

+���
�=1

M

��n1,��2

+ ��
�=1

M

��n2,��2

. �66�

In Eq. �65� we use the inequality21

�x − �x + y 
 −
y

2�x
. �67�

Taking for simplicity ��n1,�=��n2,�=b and
���n3,��=a—and thus M should be even to satisfy Eq.
�64�—we get

�W� − �W 
 �2MN�b��1 −
�b�

a�2
� . �68�

By suitable choice of a and b, one can make the right-hand
side �RHS� of �68� positive, thus proving the desired state-
ment �63�.

why the concept of work—though mentioned as a helpful one for
interpreting the Gibbs paradox �6,15�—was never seriously em-
ployed for resolving the paradox.

21To prove �67� make an incomplete Taylor expansion for f�x�
=�x: f�x+y�= f�x�+yf��x�+ �y2� / �2�f����, where x���x+y, and
disregard �y2� / �2�f�����0.
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VII. MIXING WORK AND THE DEGREE OF MIXING

As we saw, the mixing work is zero when there is no true
mixing—i.e., when the internal states of the mixed gases are
identical.22 It is expected that the mixing work will decrease
together with the degree of mixing.

Consider the mixing work �W��� � as a function of the

weights �� = �����=1
M . For fixed states �����=1

M , we expect that if

�� is more inhomogeneous than �� , then

�W��� � 
 �W��� � . �69�

Here is an exaggerated example illustrating �69�: for two
species the degree of mixing is expected to be higher when
having 100 particles of each type than when having 199 and
1, respectively. The weights for this example are, respec-
tively, �1=�2=1/2 and �1=199/200, �2=1/200.

Below we clarify in which sense the intuitive expectation
�69� is correct.

A. Majorization

First we need the proper formalization for the notion of
“inhomogeneous.” This is provided by the concept of major-
ization �37� which we shortly recall below.

For two sets of probabilities �� = �����=1
M and �� = �����=1

M , ��

majorizes �� �i.e., �� is more inhomogeneous than �� �, denoted
as

�� � �� , �70�

if, for all 1�m�M,

�
�=1

m

��
↓ 
 �

�=1

m

��
↓ , �71�

where �↓� means nonincreasing ordering of �� �recall �31��.
To illustrate �71�, the uniform vector �1/M , . . . ,1 /M� is

majorized by all other probability vectors, while any deter-
ministic vector—e.g., �1,0,¼,0�—majorizes all others. It fol-
lows from �71� that ��=1

M f�������=1
M f���� for any concave

function f�x� �37�—e.g., f�x�=−x ln x �entropy�.
The majorization property is transitive: �� ��� and �� ���

imply �� ��� . Also �� ��� and �� ��� imply �↓� =�↓� . However,

this property is incomplete: for n
3 there are vectors �� and

�� for which neither �� majorizes �� nor does �� majorize ��

�37�.

B. Quasiclassical situation

Let the initial states of the gases be M pure, orthonormal
states

�� = �������, ������ = ���. �72�

We call this situation quasiclassical, since following the
original formulation of the Gibbs paradox within classical
thermodynamics, the internal states are completely distin-
guishable and provide definite values for any observable that
has �������=1

M as its eigenfunctions.

Let us now prove that if �� is more inhomogeneous than
�� —i.e., if �71� holds—then inequality �69� is valid. To this
end we first employ summation by parts:

�
k=1

n

�k�k
↓ = �n − ��2 − �1��1

↓ − ��3 − �2���1
↓ + �2

↓� − ��4 − �3�

���1
↓ + �2

↓ + �3
↓� − ¯ ,

and then recalling �50� we get

�W��� � − �W��� �
N

= �
k=1

n

�k��k
↓ − �k

↓� = ��2 − �1���1
↓ − �1

↓�

+ ��3 − �2���1
↓ + �2

↓ − �1
↓ − �2

↓� + ¯ 
 0.

�73�

Here each separate term is non-negative due to �30� and �71�.
For this quasiclassical situation the above intuition �more

mixing means larger mixing work� is correct.

C. Quantum situation

Let us assume that the initial states �����=1
M are not or-

thogonal. For simplicity we shall work with the simplest
nontrivial situation

n = M = 2, �74�

i.e., two-dimensional internal state and two mixed gases.

�W is now given by �59�. We assume that �� is more ordered
than �� in the sense of majorization, which for M =2 implies

�1 
 �2, �1 
 �2, �1 
 �1. �75�

Note that for the considered two-dimensional situation,
n=2, the majorization order coincides, e.g., with the entropic
order: Eq. �75� implies −�1 ln �1−�2 ln �2�−�1 ln �1
−�2 ln �2.

We now intend to clarify under which conditions inequal-
ity �69� holds. Recalling �59� this inequality is equivalent to

��1 − �1���n�1� − �n�2��


 ���1�n�1� + �2�n�2��2 − 2�1�2�n�1��n�2��1 − cos ��

− ���1�n�1� + �2�n�2��2 − 2�1�2�n�1��n�2��1 − cos �� ,

�76�

where cos � is defined as

22Note that when the overall numbers of particles N� in each
reservior is not very large, even the mixing of completely identical
gases brings about changes in their final state �9�. This is due to
different fluctuation characteristics of the translational motion �9�;
e.g., before mixing the number of particles in the volume V� is
precisely N�, while after mixing this number of particles will fluc-
tuate being equal to N� only on average. We shall neglect this effect
assuming N� to be sufficiently large.
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n�1 · n�2 = �n�1��n�2�cos � . �77�

When both states are pure, �n�1�= �n�2�=1, inequality �76� re-
duces to �1�2
�1�2 or

�1 + �1 
 1, �78�

a condition which is always satisfied in view of �75�.
Assume in �76� that � is small and expand �76� to first

order of 1−cos �. After algebraic steps we get a generaliza-
tion of �78�:

�1 + �1 
 1 + �1�1	1 −
�n�1�
�n�2�
 . �79�

This inequality is already not always satisfied. When �n�1� / �n�2�
is sufficiently small—i.e., one of the states is considerably
more mixed—Eq. �79� may be violated; take, e.g., �1=0.8
and �1=0.7. We conclude that in the quantum situation the
mixing work may be a nonmonotonous function of the degree
of mixing, though it goes to zero continuously when the sub-
stances become identical.

VIII. DISTINGUISHABILITY AND MIXING

Another way to control the mixing is to keep the weights
equal, but make the internal states �1 and �2 closer to each
other. It is natural to ask whether the mixing work is a mono-
tonic function of the difference between these substances—
i.e., whether decreasing this difference always makes the
mixing work smaller. Below we are going to show that this is
not always the case, though the mixing work, of course, goes
to zero in the limit of identical substances.

First of all we need a clear understanding of the proper
distance �closeness� between two density matrices �1 and �2.
The answer is trivial for pure states as in �16�: any mono-
tonic function of the overlap

tr��1�2� = �a1�a2��2 �80�

can be taken as the proper degree of closeness.
The generalization of the overlap �80� to mixed states is

also well known and was derived from several different per-
spectives �38,39�. This “distinguishability” reads

d��1,�2� = �tr���1
1/2�2�1

1/2��2. �81�

Let us note that d��1 ,�2� is symmetric,

d��1,�2� = d��2,�1� , �82�

concave,

d„�,x�1 + �1 − x��2… 
 xd��,�1� + �1 − x�d��,�2� , �83�

and varies between 0 and 1,

0 � d��1,�2� � 1, �84�

being equal to 1 if and only if �1=�2. It is also multiplicative,

d��1 � �3,�2 � �4� = d��2,�1�d��3,�4� , �85�

invariant under unitary transformations,

d��1,�2� = d�U�1U†,U�2U†�, U†U = 1, �86�

increases under completely positive evolution, and reduces
to tr��1�2� if �1 or �2 is pure.

In particular, d��1 ,�2� has the proper information-
theoretic meaning as arising from the statistical distance be-
tween the data acquired by optimal measurements carried out
for distinguishing between �1 and �2 �38�.

In Appendix B we determine d��1 ,�2� for two spin-1
2 den-

sity matrices �1 and �2, given as in Eq. �56�, with Bloch
vectors n�1 and n�2, respectively23:

2d��1,�2� − 1 = n�1 · n�2 + �1 − �n�1�2�1 − �n�2�2. �87�

For pure states �n���=1, and we expectedly obtain from Eq.
�87� propotionality between the overlap and the scalar prod-
uct of the two Bloch vectors.

For the mixing work we have, from Eq. �59�,

�W
N =

�

2
��1�n�1� + �2�n�2� − ��1

2�n�1�2 + �2
2�n�2�2 + 2�1�2n�1 · n�2� .

�88�

When comparing Eq. �88� with Eq. �87� we see that if
only the scalar product n�1 ·n�2 is varied—with the modules
�n�1� and �n�2� being fixed—making the two states closer, the
mixing work �W indeed monotonically decreases. In par-
ticular, this is the case for pure states �1 and �2. However, as
seen from Eq. �87�, for mixed states �1 and �2 the scalar
product between the corresponding Bloch vectors is only one
aspect of closeness. To look at another setup, vary �n�1� with
�n�2� while keeping their mutual angle � fixed �see Eq. �77�
for the definition of ��. Note that �W always increases with
�n�1�:

��W
��n�1�

=
�

2��1n�1 + �2n�2�
���1n�1 + �2n�2� − �1�n�1� − �2�n�2�cos ��


 0. �89�

On the other hand, we have, from Eq. �87�,

�d��1,�2�
��n�1�

� =
1

2�1 − �n�1�2
�cos ��n�2��1 − �n�1�2 − �n�1��1 − �n�2�2� .

�90�

When the scalar product is positive, n�1 ·n�2=cos ��0, Eq.
�90� can be positive; i.e., the states can get closer with in-
creasing �n�1�, if �n�1� is sufficiently small or if �n�2� is suffi-
ciently close to 1. Comparing with Eq. �89� we conclude that
it is possible to make the two states of the mixing substances
closer to each other and simultaneously increase the mixing
work.24

We stress that all conclusions of the present section are
valid under other reasonable measures of distance between

23Note the difference with 2tr��1�2�−1=n�1 ·n�2.
24Note that Ref. �16� discusses a similar situation in classical

chemical physics. The analogy, however, appears to be superficial,
since the author of Ref. �16� bases his conclusions on the nonaddi-
tive classical formula Scl�N ,V�=N ln V for entropy.
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�1 and �2—e.g., tr���1−�2�2�. Indeed, it amounts to a simple
check that the qualitative conclusion we got after Eq. �90� is
valid as well for this measure of closeness.

IX. CONCLUSION

Since its formulation in the late 1870s, the Gibbs paradox
has, lacking a simple solution, become a quest for the under-
standing of phenomenological thermodynamics from a more
fundamental theory. This attempt to go to a deeper level is
the reason for its importance �4–9�. Its understanding hap-
pens to have several layers. First, it was realized that it is
necessary to take into account explicitly the difference be-
tween the particles, which drives the classical formulation of
the paradox, but how much they differ shows up nowhere in
formulas. Together with the separation of characteristic re-
laxation times and the von Neumann definition of entropy,
this brought about the quantum mixing entropy argument
which for many years was seen as the resolution of the Gibbs
paradox �6–10�. It was, however, pointed out that the argu-
ment introduces a new conceptual difficulty precisely when
it claims to solve the paradox �14�. The details being pre-
sented in Sec. III, we simply recall that this difficulty has to
do with the features of entropy, more precisely, with the fact
that the entropy is not a sufficiently primitive �first-order�
quantity in the situation at hand. So a deeper reduction level
has to be involved for the resolution of the Gibbs paradox.

In our opinion, the basic reason why classical thermody-
namics fails for the understanding of mixing entropy is that
the difference between an A atom and a B atom is not dealt
with properly. We are thus left with the search for a more
fundamental approach. Such a possibility is offered by the
field of quantum thermodynamics, which has been consid-
ered in recent years by several groups; see, e.g.,
�18,19,22,27,30–32,34,36,40–44�.

In the current paper we have presented an explanation of
the Gibbs paradox within this field. Here the notion of en-
tropy is known to be easily blurrred, and a paradigm shift is
called for towards the more ancient concept of work �energy
transferred to macroscopic work sources�, which still plays a
clear and empirical role. In particular, quantum thermody-
namics applies to finite systems; e.g., the basic formulations
of the second law are well defined both conceptually and
operationally �30�. Indeed, it could be shown that Landauer’s
principle that connects the minimal energy dispersion to
erase one bit of information �Q
kT ln 2 may lose its valid-
ity in the domain of quantum thermodynamics �19�, while
the Maxwell demon problem just found new viewpoints
there �22,45�.

It was further shown that the maximally extractable work
�which we called “ergotropy” in an earlier paper with R.
Balian �34�� can be clearly defined before and after the mix-
ing process. The difference between them defines the maxi-
mal mixing work or mixing ergotropy, a non-negative quan-
tity which smoothly goes to zero when the substances
become more and more equal to each other, as it is for a
single substance, thus solving the Gibbs paradox in the work
formulation. �As should be clear from our presentation, we
consider that the Gibbs paradox in its entropic formulation

has not been properly solved so far and that we even do not
believe that it is consistently resolvable in that form.�

In contrast to entropy, the features of work can be directly
based on the first principles of quantum mechanics and
are well defined for any �equilibrium or nonequilibrium�
state of a system interacting with macroscopic sources of
work. In particular, there is no need to involve features of
thermodynamical reversibility for defining and interpreting
the mixing work; see in this context footnotes 14 and 15. On
top of that, the concept of maximal work has a well-defined
operational character, because it is always defined with re-
spect to a definite class of work sources acting on the system
of interest. The features of work and entropy are recalled and
contrasted in Secs. V A and IV A 1 and Appendix A. Recall
in this context that the concept of work was already em-
ployed in the literature devoted to the Gibbs paradox �6,15�,
but its potential applications were conceived in the frame-
work of phenomenological thermodynamics. In that way,
they encounter almost all objections raised against the mix-
ing entropy argument. Only after the problem of maximal
work extraction was solved from first principles �34� did it
became possible to approach an explanation of the Gibbs
paradox with the help of the mixing work. This explanation
is free of the difficulties which plagued the quantum entropy
argument.

To keep our approach as natural as possible, we have
supposed that, after allowing the gases to mix, the transla-
tional degrees of freedom equilibrate rather quickly, while
their spin degrees of freedom do not equilibrate at all at the
time scales for which our discussion applies because their
dynamics are supposed to take place on a much larger time
scale. For this reason, these degrees of freedom can be con-
sidered as not coupled to the bath, which saves us from dis-
cussing the more complicated situation where heat exchange
of the spins with the bath would also matter.

The consistent resolution of the paradox presents features
that might not have been anticipated before. It appears that
less precise control can, depending on the situation, bring a
larger or a smaller amount of mixing work. We have also
seen that a naive intuition relating the degree of mixing and
the distinguishability with the mixing ergotropy may not al-
ways be correct: sometimes making the initial states of the
mixed substances closer to each other �in the proper
information-theoretic sense� can make the amount of mixing
work larger. These are warnings against a direct association
of physical irreversibility �i.e., mixing work� with lack of
information: while the amount of mixing work is nonzero
due to less information on the identity of atoms in the post-
mixed state, the relation of this lack of information to the
physical irreversibility can be nontrivial and counterintuitive.
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APPENDIX A: THE FORMULATION OF THE SECOND
LAW SETS THE CHOICE OF THE ENTROPY

Here we shall recall why entropy is not uniquely defined
and why its possible definitions depend on the formulation of
the second law of thermodynamics.

Consider an adiabatically isolated process done on a
quantum system described by density matrix ��t�. The pro-
cess is realized via a time-dependent Hamiltonian, with the
cyclic feature defined according to Eq. �25�. The evolution of
the system starts from some Gibbsian equilibrium state at a
positive temperature. It is well known from thermodynamics
�1,2� and can be derived from the first principles of quantum
mechanics—see �28,29� and our discussion in Sec. V B—
that in this process the system consumes positive work which
is the statement of the second law in Thomson’s formulation.
It is natural to look for the counterpart of this formulation in
terms of entropy. Since the dynamics of the thermally iso-
lated system is unitary, the von Neumann entropy SvN(��t�) is
constant in time, so it is not suitable for being the counterpart
of the Thomson’s formulation. This argument is sometimes
dismissed on the grounds that the unitary dynamics is revers-
ible and thus the constant behavior of the von Neumann
entropy is reasonable. In the present context this seems in-
correct, in particular because a positive amount of work is
put into the system in accordance with Thomson’s formula-
tion of the second law.

In the spirit of the relevant entropy approach �2� �there are
many entropies, each one for its own situation and its own
use� we can regard as physical another entropy

ST�t� = − �
k

�k�t�ln �k�t� , �A1�

with �k being the time-dependent probabilities of various
values of the system’s energy �given by the time-dependent
Hamiltonian� in the state ��t�. This definition of entropy was
proposed and advocated by Tolman �46�. For the considered
process, ST does have several reasonable properties.

�i� At the end of the cyclic-Hamiltonian process, ST is
larger than in the initial equilibrium state �28,29�.

�ii� Under conditions specified in �30�, the change of ST is
minimal for the adiabatically slow process, again as required
by thermodynamics.

�iii� ST is maximal in equilibrium.
Each of these three features corresponds to a specific for-

mulation of the second law. Features �i� and �ii� will not be
valid when using the von Neumann entropy.

Thus, we are led to employ the Tolman definition of en-
tropy following to the requirements of the second law.

Let us now consider an isothermal process, where the
system �e.g., a spin or a Brownian particle� weakly interacts
with an equilibrium thermal bath at temperature T. The bath
being in equilibrium means for the present context two
things. First, it starts in the equilibrium state at temperature
T, and, second, its relevant characteristic times are much
larger than those of the system. �An additional feature of

weak interactions was stressed by us above.� It is again well
known from phenomenological thermodynamics and is de-
rived from the first principles of quantum mechanics that
during the relaxation of the system to equilibrium, the �non-
equilibrium� free energy decays, a statement known as the H
theorem �1,2,29�:

dF

dt
=

d

dt
�E�t� − TSvN�t�� �

d

dt
�tr���t�H� + Ttr���t�ln ��t���

� 0, �A2�

where ��t� is the density matrix of the system and where H is
its time-independent Hamiltonian. Note especially that the H
theorem will in general not be valid if instead of the von
Neumann entropy we shall use in �A2� the Tolman entropy
ST. Thus, here for isothermal processes we had to return to
the von Neumann definition of entropy. What is the proper
definition of entropy when the process is neither isothermal
nor thermally isolated is in general not known �31�.

In short, in statistical physics the definitions of entropy
are contextual, since they already depend on various formu-
lations of the second law. It is, therefore, questionable
whether arguments based on entropies are able to resolve
thermodynamical paradoxes.

APPENDIX B: A USEFUL IDENTITY

Here we outline how to calculate the overlap defined in
�87� for two spin-1

2 density matrices

� =
1

2
�1 + n�� · �� �, � = 1,2. �B1�

We need the following facts. First, note that the square
root of � is most conveniently calculated when representing
� as

� =
1

2
�1 + sin ��� · �� � , �B2�

where 0���� /2 and where �� is a unit vector ��� �=1. Then,

�� =�1

2
�cos

�

2
+ sin

�

2
�� · ��� �B3�

and

tr�� = �2 cos
�

2
= �1 + �1 − �n� �2. �B4�

Next, we need the known identity for Pauli matrices,

�n�1 · �� ��n�2 · �� � = �n�1 · n�2� + i�� · �n�1 � n�2� , �B5�

where �n�1�n�2� is the vector product. And, finally, the last
ingredient is given by

��� · �� ���� · �� ���� · �� � = �2��� · ����� − ��� · �� , �B6�

where � and � are unit vectors. Equation �B6� follows from
Eq. �B5� and the double-vector-product identity

†n�3 � �n�1 � n�2�‡ = n�1�n�2 · n�3� − n�2�n�1 · n�3� . �B7�
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